A note on Hamiltonian cycles in generalized Halin graphs
نویسنده
چکیده
We show that every 2-connected (2)-Halin graph is Hamiltonian.
منابع مشابه
Hamiltonian Properties of Generalized Halin Graphs
A Halin graph is a graph H = T ∪ C , where T is a tree with no vertex of degree two, and C is a cycle connecting the end-vertices of T in the cyclic order determined by a plane embedding of T. In this paper, we define classes of generalized Halin graphs, called k-Halin graphs, and investigate their Hamiltonian properties.
متن کاملHamiltonicity of Cubic 3-Connected k-Halin Graphs
We investigate here how far we can extend the notion of a Halin graph such that hamiltonicity is preserved. Let H = T ∪ C be a Halin graph, T being a tree and C the outer cycle. A k-Halin graph G can be obtained from H by adding edges while keeping planarity, joining vertices of H − C, such that G − C has at most k cycles. We prove that, in the class of cubic 3-connected graphs, all 14-Halin gr...
متن کاملLovász-Plummer conjecture on Halin graphs
A Halin graph, defined by Halin [3], is a plane graph H = T ∪ C such that T is a spanning tree of H with no vertices of degree 2 where |T | ≥ 4 and C is a cycle whose vertex set is the set of leaves of T . In his work, as an example of a class of edge-minimal 3-connected plane graphs, Halin constructed this family of plane graphs, which have many interesting properties. Lovász and Plummer [5] n...
متن کاملHomeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees
A tree T with no vertex of degree 2 is called a homeomorphically irreducible tree (HIT) and if T is spanning in a graph, then T is called a homeomorphically irreducible spanning tree (HIST). Albertson, Berman, Hutchinson and Thomassen asked if every triangulation of at least 4 vertices has a HIST and if every connected graph with each edge in at least two triangles contains a HIST. These two qu...
متن کاملGrinberg's Criterion Applied to Some Non-Planar Graphs
Robertson ([5]) and independently, Bondy ([1]) proved that the generalized Petersen graph P (n, 2) is non-hamiltonian if n ≡ 5 (mod 6), while Thomason [7] proved that it has precisely 3 hamiltonian cycles if n ≡ 3 (mod 6). The hamiltonian cycles in the remaining generalized Petersen graphs were enumerated by Schwenk [6]. In this note we give a short unified proof of these results using Grinberg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 30 شماره
صفحات -
تاریخ انتشار 2010